Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Context. Wind dynamics play a pivotal role in governing transport processes within planetary atmospheres, influencing atmospheric chemistry, cloud formation, and the overall energy budget. Understanding the strength and patterns of winds is crucial for comprehensive insights into the physics of ultra-hot-Jupiter atmospheres. Current research has proposed different mechanisms that limit wind speeds in these atmospheres. Aims. This study focuses on unraveling the wind dynamics and the chemical composition in the atmosphere of the ultra-hot Jupiter TOI-1518 b. Methods. Two transit observations using the high-resolution (Rλ∼ 85 000) optical (spectral coverage between 490 and 920 nm) spectrograph MAROON-X were obtained and analyzed to explore the chemical composition and wind dynamics using the cross-correlation techniques, global circulation models (GCMs), and atmospheric retrieval. Results. We report the detection of 14 species in the atmosphere of TOI-1518 b through cross-correlation analysis. VO was detected only with the new HyVO line list, whereas TiO was not detected. Additionally, we measured the time-varying cross-correlation trails for six different species, compared them with predictions from GCMs, and conclude that a strong drag is slowing the winds in TOI-1518 b’s atmosphere (τdrag≈ 103−104s). We find that the trails are species dependent. Fe+ favors stronger drag than Fe, which we interpret as a sign of magnetic effects being responsible for the observed strong drag. Furthermore, we show that Ca+ probes layers above the Roche lobe, leading to a qualitatively different trail than the other species. Finally, We used a retrieval analysis to further characterize the abundances of the different species detected. Our analysis is refined thanks to the updated planetary mass of 1.83 ± 0.47 MJupwe derived from new Sophie radial-velocity observations. We measure an abundance of Fe of log10Fe = −4.88−0.76+0.63corresponding to 0.07 to 1.62 solar enrichment. For the other elements, the retrievals appear to be biased, probably due to the different Kp/Vsysshifts between Fe and the other elements, which we demonstrate for the case of VO.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory for testing the impact of stellar irradiation on the dynamics and chemical composition of gas giant atmospheres. In this study, we observed two transits of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its high-altitude atmospheric layers, using strong absorption lines. We derived posterior probability distributions for the planetary and stellar parameters by calculating the stellar spectrum behind the planet at every orbital phase during the transit. This was used to correct the Rossiter–McLaughlin imprint on the transmission spectra. Using differential transmission spectroscopy, we detect strong absorption lines of Ca+, Ba+, Na, Hα, Mg, Fe, and Fe+, providing an unprecedented and detailed view of the atmospheric chemical composition. Ca+absorption is particularly well suited for analysis through time-resolved narrow-band spectroscopy, owing to its transition lines formed in high-altitude layers. The spectral absorption lines show no significant blueshifts that would indicate high-altitude day-to-night winds, and further analysis is needed to investigate the implications for atmospheric dynamics. These high signal-to-noise observations provide a benchmark data set for testing high-resolution retrievals and the assumptions of atmospheric models. We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES will be highly sensitive to the individual absorption lines of a myriad of elements and molecules, including TiO and CO.more » « less
- 
            Abstract We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary$$\gamma $$ spectroscopy, measures light yields across diverse energy levels from full-energy$$\gamma $$ peaks produced by the decays of various isotopes. These$$\gamma $$ peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of$$\mathrm {^{22}Na}$$ from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
